Calculation of Electric Dipole Moments of the Nucleon

Hiroshi Ohki

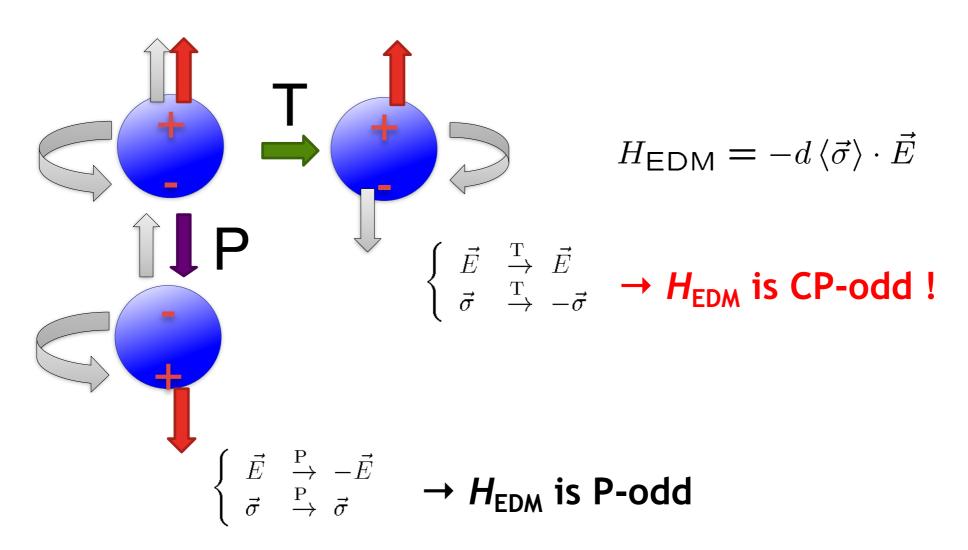
Nara Women's University

M. Abramczyk, S. Aoki, T. Blum, T. Izubuchi and S. Syritsyn

2019 Lattice X Intensity Frontier Workshop, Brookhaven National Laboratory, September 23-25, 2019

Introduction

- Electric Dipole Moment d
 Energy shift of a spin particle in an electric field
- Non-zero EDM: P&T (CP through CPT) violation

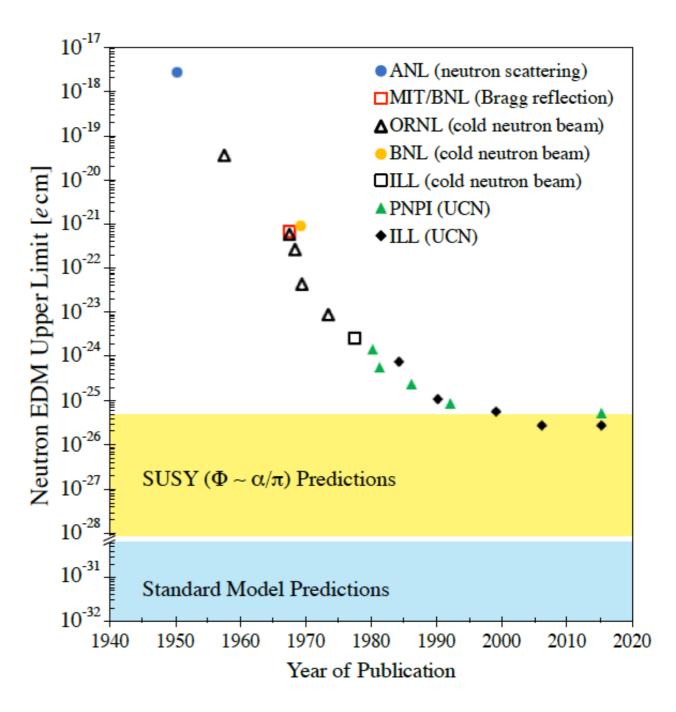


Nucleon EDM Experiments

Current nEDM limits:

¹⁹⁹Hg spin precession (UW) [Graner et al, 2016] Ultracold Neutrons in a trap (ILL) [Baker 2006] $|d_{Hg}| < 7.4 \times 10^{-30} \; \mathrm{e \cdot cm}$ $|d_n| < 2.6 \times 10^{-26} \; \mathrm{e \cdot cm}$

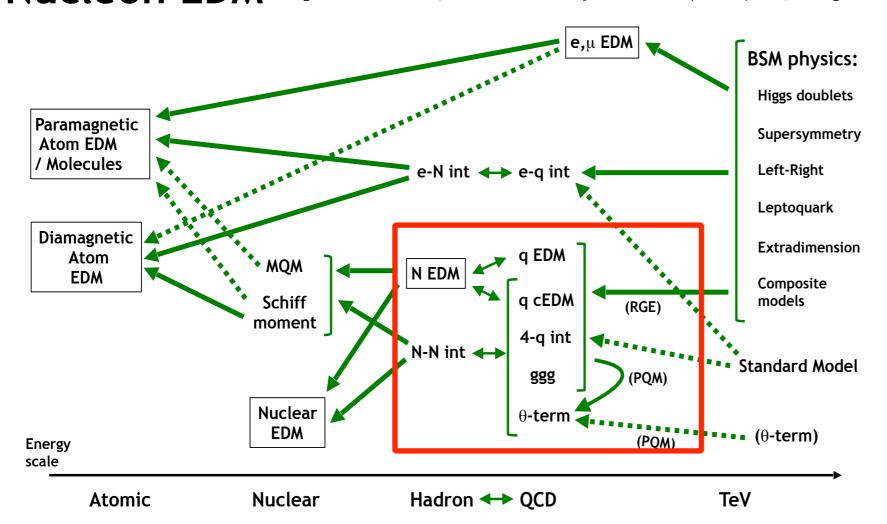
	10 ⁻²⁸ e cm		
CURRENT LIMIT	<300		
Spallation Source @ORNL	< 5		
Ultracold Neutrons @LANL	~30		
PSI EDM	<50 (I), <5 (II)		
ILL PNPI	<10		
Munich FRMII	< 5		
RCMP TRIUMF	<50 (I), <5 (II)		
JPARC	< 5		
Standard Model (CKM)	< 0.001		



Figures from S.Kawasaki (KEK)

Nucleon EDM

[N. Yamanaka, et al. Eur. Phys. J. A53 (2017) 54, Ginges and Flambaum Phys. Rep. 397, 63, 2004]



Important bottleneck of the EDM calculation!

observable : Observable available at experiment : Sizable dependence : Weak dependence : Matching

Role of (lattice) QCD: connect quark/gluon-level (effective) operators to hadron/nuclei matrix elements and interactions (Form factor, dn)
Non-perturbative determination is important

→ Lattice QCD calculation!

Effective CPV operators

$$\begin{split} \mathcal{L}_{eff}^{CP} = & \frac{g_s^2}{32\pi^2} \bar{\theta} G_{\mu\nu} \tilde{G}^{\mu\nu} & \text{dim=4, } \theta_{QCD} \\ & - \frac{i}{2} \sum_{i=u,d,s} \tilde{d}_i \bar{\psi}_i G \cdot \sigma \gamma_5 \psi_i & \text{dim=5, chromo EDM} \\ & - \frac{i}{2} \sum_{i=e,u,d,s} d_i \bar{\psi}_i F \cdot \sigma \gamma_5 \psi_i & \text{dim=5, e, quark EDM} \\ & + \omega f^{abc} G_{\mu\nu,a} G^{\mu\beta,b} G^{\nu,c}_{\ \beta} & \text{dim=6, Weinberg three gluon} \\ & + \sum_{i=e,u,d,s} C^{(4q)}_i \mathcal{O}^{(4q)}_i & \text{dim=6, Four-quark operators} \end{split}$$

```
\bar{\theta} \leq \mathcal{O}(10^{-10}): Strong CP problem quark-chromo EDM Dim=5 operators suppressed by m_q/\Lambda^2 \rightarrow effectively dim=6, quark EDM ... the most accurate lattice data for EDM (~5% for u,d) cEDM and Weinberg ops. are ongoing. [T. Bhattacharya, plenary talk] Lattice QCD calculations are important to constrain \theta, cEDM etc.
```

Calculating CP-odd interaction on the lattice

CP-violating interaction on lattice

EXAMPLE 1 Linearization of CP-odd interaction (e.g. : θ -EDM)

$$e^{-S_{QCD}-i\theta Q} = e^{-S_{QCD}} \left[1 - i\theta Q + \mathcal{O}(\theta^2) \right]$$

$$\langle \mathcal{O} \rangle_{\mathcal{CP}} = \langle \mathcal{O} \rangle_{CP-even} - i\theta \langle Q \cdot \mathcal{O} \rangle_{CP-even} + \mathcal{O}(\theta^2)$$
(CP-even) (CP-odd)

CPV operator : Q, cEDM, etc..., $\theta << 1$

P, T-odd form factor [E. Shintani et al 2005, F. Berruto et al 2015, A. Schindler et al, 2015, C. Alexandra et al, 2015, J. Dragos et al, 2019]

$$\langle p',\sigma'|J^{\mu}|p,\sigma\rangle = \bar{u}_{p',\sigma'}\left[F_1(Q^2)\gamma^{\mu} + F_2(Q^2)\frac{i\sigma^{\mu\nu}q_{\nu}}{2m_N} - F_3(Q^2)\frac{\gamma_5\sigma^{\mu\nu}q_{\nu}}{2m_N}\right]u_{p,\sigma}$$
 P, T even P, T odd

$$d_n = \lim_{Q^2 \to 0} \frac{F_3(Q^2)}{2m_N} \qquad \text{Need Q2} \to 0 \text{ extrapolation}$$

Problem: Prior to 2017, a spurious mixing between EDM and magnetic moments in all previous lattice computations of nucleon form factor.

CP violating interaction induces a chiral phase:

$$\langle 0|N|p,\sigma\rangle_{\mathcal{CP}} = e^{i\alpha\gamma_5}u_{p,\sigma} = \tilde{u}_{p,\sigma}$$

 $ilde{u}_p$ is a solution spinor of the free Dirac equation: $(p - m_N e^{-2i\alpha\gamma_5}) \tilde{u}_p = 0$

α is mixing angle (CP-violating mass correction)

This mixing angle α has to be calculated, and rotated away to get "net" CP-violation effect.

$$\bar{\underline{\boldsymbol{u}}_{p',\sigma'}} \left[\tilde{F}_1 \gamma^{\mu} + (\tilde{F}_2 + i\tilde{F}_3 \gamma_5) \frac{i\sigma^{\mu\nu} q_{\nu}}{2m_N} \right] \underline{\boldsymbol{u}_{p,\sigma}} \equiv \bar{u}_{p',\sigma'} \left[F_1 \gamma^{\mu} + (F_2 + i\boldsymbol{F}_3 \gamma_5) \frac{i\sigma^{\mu\nu} q_{\nu}}{2m_N} \right] u_{p,\sigma}$$

[Previous "lattice" parametrization prior to 2017]

$$(F_2 + iF_3\gamma_5) = e^{2i\alpha\gamma_5}(\tilde{F}_2 + i\tilde{F}_3\gamma_5) \qquad \Rightarrow \qquad [F_2]_{\text{correct}} = F_2 + \mathcal{O}(\alpha^2)$$
$$[F_3]_{\text{correct}} = \tilde{F}_3 + 2\alpha F_2$$

Previous lattice EDM results (prior to 2017) were subject to large contamination from F2,3 mixing.

Reanalysis of "lattice" θ induced EDM

Correction is simple: $[F_3]_{\mathrm{correct}} = \tilde{F_3} + 2\alpha F_2$

		$m_{\pi} [\mathrm{MeV}]$	$m_N [{ m GeV}]$	F_2	α	$ ilde{F}_3$	$\overline{F_3}$
[ETMC 2016]	\overline{n}	373	1.216(4)	-1.50(16)	-0.217(18)	-0.555(74)	0.094(74)
「Shintani et al 20051 ⊢	\overline{n}	530	1.334(8)	-0.560(40)	-0.247(17)	-0.325(68)	-0.048(68)
	p	530	1.334(8)	0.399(37)	-0.247(17)	0.284(81)	0.087(81)
[Rerruto et al 2006] -	n	690	1.575(9)	-1.715(46)	-0.070(20)	-1.39(1.52)	-1.15(1.52)
	n	605	1.470(9)	-1.698(68)	-0.160(20)	0.60(2.98)	1.14(2.98)
[Guo et al 2015] -	n	465	1.246(7)	-1.491(22)	-0.079(27)	-0.375(48)	-0.130(76)
	n	360	1.138(13)	-1.473(37)	-0.092(14)	-0.248(29)	0.020(58)

Removing spurious contributions: no signal of EDM

→ consistent with phenomenological estimates

How to improve the signal?



Noise reduction technique for θ -EDM

©Constrain Q sum to fiducial volume for θ -EDM:

Topological charge:
$$Q\sim\int_{V_4}G\tilde{G},\quad \langle Q^2\rangle\sim V_4$$

$$Q\sim\int_{V_Q}d^4xq(x) \qquad \text{(Statistical error^2~~\sim V_4$)}$$

- $m{*}$ in time around current $|t_Q-t_J|<\Delta t$ [E. Shintani et al (2015), B. Yoon et al (2019)]
- * 4d spherical around sink $|x_Q x_{sink}| < R$ [K. -F. Liu et al (2017)]
- * 4d "cylinder" $V_Q: |\vec{x}| < r_Q, \quad -\Delta t_Q < t_0 < T + \Delta t_Q$ [S. Syritsyn et al (2018)]
- $m{*}$ in time around source $|t_Q-t_{
 m src}|<\Delta t$ [J. Dragos et al (2019)]

Selected recent progresses for θ -EDM will be shown.

1: α-improvement

3-pt functions with topological charge density

$$\Delta C_{3pt}(\tau) \equiv \langle T\{N(T)\bar{Q}(\tau)\bar{N}(0)\}\rangle, \qquad \bar{Q}(\tau) \equiv \int d^3x G\tilde{G}(x,\tau)$$

Performing the spectral decomposition

(1)
$$0 < \tau < T$$

$$\Delta C_{3pt}(\tau) = \langle N(T)\bar{Q}(\tau)\bar{N}(0)\rangle \sim \sum_{n,m} e^{-E_n(T-\tau)-E_m\tau} \langle 0|N|n\rangle \langle n|\bar{Q}|m\rangle \langle m|\bar{N}|0\rangle \sim \sum_{m\neq n} \cosh\left(\Delta m_{mn}(\tau-T/2)\right)$$
$$\langle N_+|\bar{Q}|N_+\rangle = 0 \text{ due to } P \text{ sym.}$$
$$(|N_+\rangle : \text{ ground state nucleon })$$

(2)
$$T < \tau$$

$$\Delta C_{3pt}(\tau) = \langle \bar{Q}(\tau)N(T)\bar{N}(0)\rangle \sim \sum_{n,m} e^{-E_n\tau - E_mT} \langle 0|\bar{Q}|n\rangle \langle n|N|m\rangle \langle m|\bar{N}|0\rangle \sim \sum_n e^{-E_n\tau}, \quad (E_0 \sim m_{\eta'})$$

exponentially suppressed

\blacksquare mixing angle α is obtained by fit analysis

$$C_{3pt}(t_s) = \sum_{\tau = -t_s}^{\tau = t_s} \Delta C_{3pt}(\tau) = A + Be^{-Et_s} \quad (t_s >> T)$$

1: α-improvement and ChPT fit for F₃

[J. Dragos et al, arXiv:1902.03254]

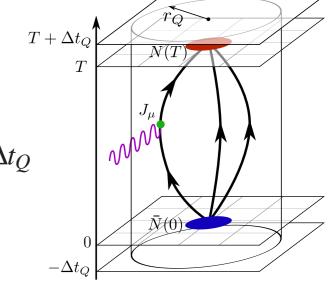
Fit ansatz: $d_{p/n}(a, m_{\pi}) = C_1 \ m_{\pi}^2 + C_2 \ m_{\pi}^2 \log(\frac{m_{\pi}^2}{m_{N,phys}^2}) + C_3 a^2$

Non-zero signal at physical point for θ -EDM by extrapolation. Far from chiral regime?

2. Our work

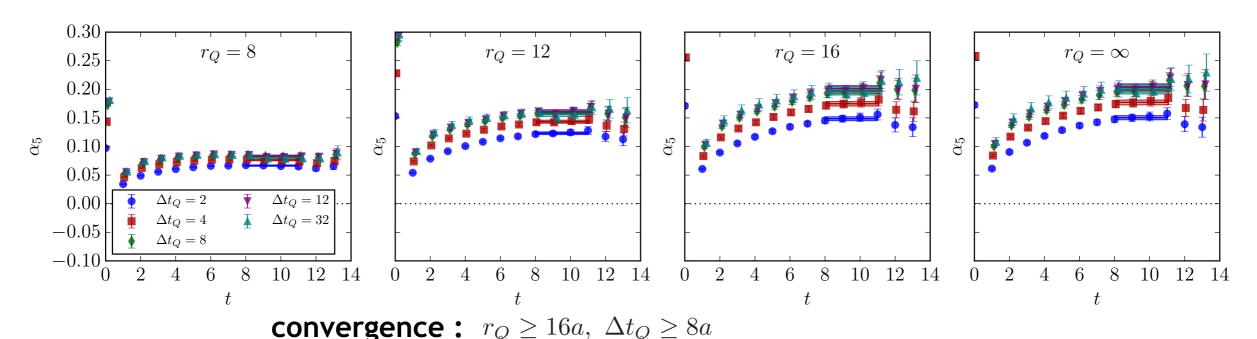
- ■Nf=2+1 (Mobius) Domain wall fermion, Iwasaki gauge action
- Reduced topological charge density $\tilde{Q}(\Delta t_Q, r_Q)$

$$\tilde{Q}(\Delta t_{Q}, r_{Q}) = \frac{1}{16\pi^{2}} \sum_{x \in V_{Q}} \text{Tr} \left[\hat{G}_{\mu\nu} \tilde{\hat{G}}_{\mu\nu} \right]_{x}, \quad (\vec{x}, t) \in V_{Q} : \begin{cases} |\vec{x} - \vec{x}_{0}| \le r_{Q}, \\ t_{0} - \Delta t_{Q} < t < t_{0} + t_{\text{sep}} + \Delta t_{Q} \end{cases}$$



Convergence test of the parity-mixing angle from the reduced topological charge

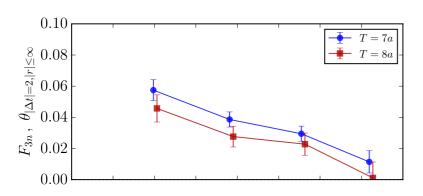
$$m_{\pi} = 340 \text{ MeV}$$

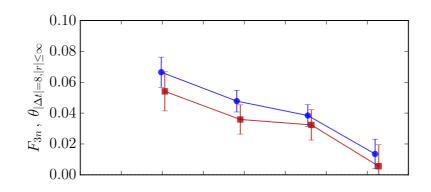


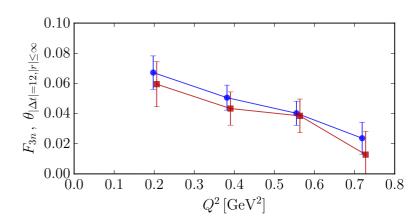
F_{3n} form factor

 $m_{\pi} = 410 \text{ MeV}$

1500 configs x 64 (AMA) samples = 96000 stat.

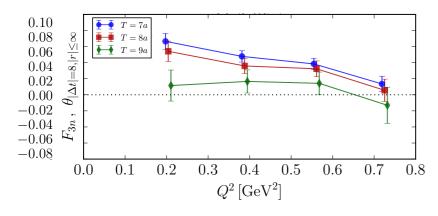


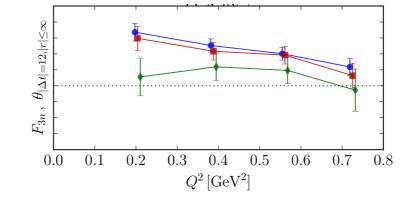


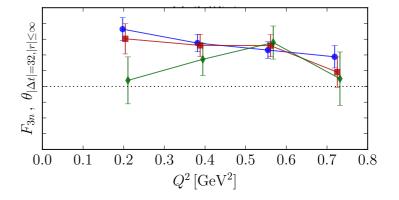


 $m_{\pi} = 340 \text{ MeV}$

1400 configs x 64 (AMA) samples = 89600 stat.



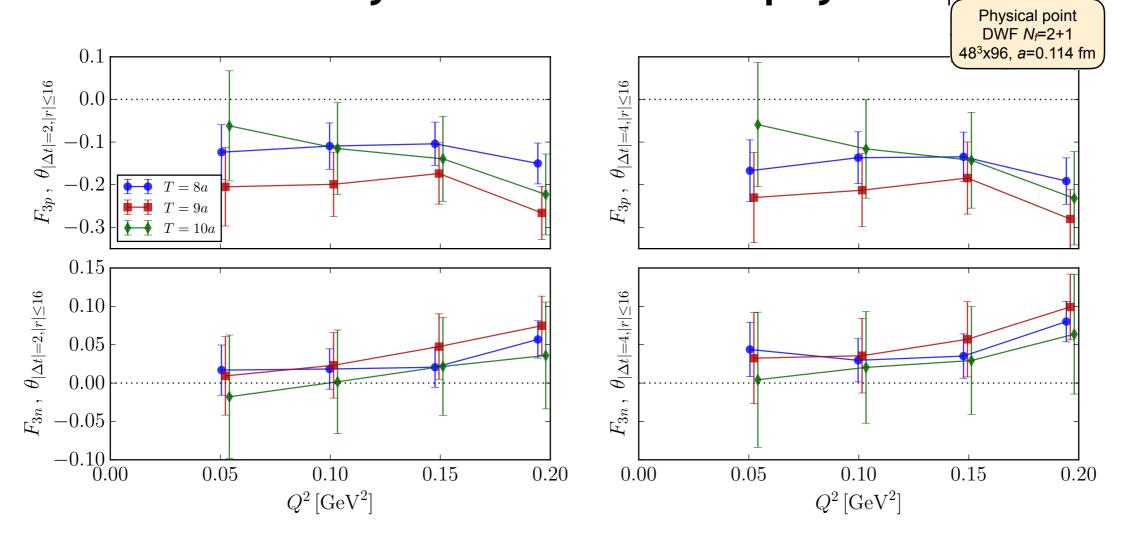




convergence: $\Delta t_Q \ge 8a$

 $\lim_{Q^2 \to 0} F_{3n}(Q^2) \sim 0.1$

Preliminary result: θ-EDM on physical point



33000 stat.

 $F_{3n}(Q^2)$: consistent with zero.

Our naive estimate of θ -nEDM at the physical point

- lacksquare Chiral fermion, m $_{\pi}$ = 330 MeV (our result) : $2m_N |d_n| = F_{3n}(0) \simeq 0.1$
- lacksquare scaling based on leading order ChPT: $\,d_n \sim m_q \sim m_\pi^2$
 - $F_{3n}(0) \sim 0.02 \cdot \theta$, $|d_n| \sim 0.002 \ e \ {\rm fm} \cdot \theta$ (physical point)
- Consistent with the results from QCD sum rule and the lattice result with ChPT fits.

$$d_n = -0.00152(71)e \text{ fm} \cdot \theta$$
 [J. Dragos et al, arXiv:1902.03254]

To constrain $|F_{3n}| < 0.02$ at m_{phys} , we need 25 ~ 100 times statistics $(\delta F_{3n}/F_{3n} \sim 5$ at physical point)

Short summary: lattice θ -EDM calculations

- Various noise reduction techniques have been used, which in fact improve the signal-to-noise ratio in the form factor calculations.
- Clear signal at heavier mass with non-zero Q²
- Result at the physical point has 50-100% error.

$$|d_n| = \mathcal{O}(10^{-3}) e \operatorname{fm} \cdot \theta, \qquad |F_{3n}| = \mathcal{O}(10^{-2})$$

- There may be a tension between chiral (and Q²) extrapolated value and a direct result at physical point.
- **Need** to understand π mass and Q^2 dependence of d_n .
- \blacksquare Constrain θ -induced nEDM at physical point is still challenging.

A new method

Matrix element approach with background electric field

Lattice QCD with background constant electric field

- *Uniform electric field preserving translational invariance and periodic boundary conditions on a lattice (Euclidean imaginary electric field)
- *used for the nucleon polarizability [W. Detmold, Tiburzi, and Walker-Loud, (2009)]
- *No sign problem: Analytic continuation of CP-odd interaction
- *consistency check of energy shift method and form factor method via cEDM operator.

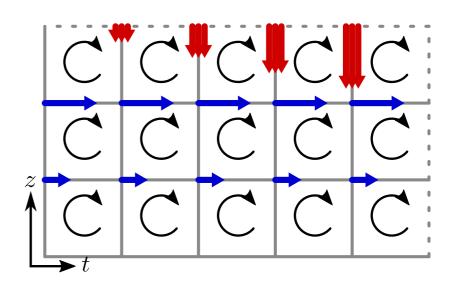
$$U_{\mu} o e^{iQ_qA_{\mu}}U_{\mu}$$
 $A_t(z,t)=\mathcal{E}_nz$ $A_z(z,t)=-\mathcal{E}_nL_zt\delta_{z=L_z-1}$ strength of E field $\mathcal{E}_n=nrac{6\pi}{L_zL_t}, \quad (n=\pm 1,\pm 2,\cdots)$

charge quanta $Q_q \mathcal{E}_n L_z L_t = 2\pi m, \quad (m: integer)$ $(Q_u = 2/3, \quad Q_d = -1/3)$

 24^3x 64 lattice minimal value of E (|n|=1)

$$\mathcal{E}_0 = \frac{6\pi}{L_z L_t} \sim 0.037 \text{ GeV}^2$$
$$\sim 186 \text{ MV/fm}$$

Charge quantization due to finite volume.



3pt function with topological charge density in the presence of background electric field

Consider 3-pt functions of topological charge density

$$\Delta C_{3pt}(\tau, \vec{\mathcal{E}}) = \langle \hat{N}(T)\bar{Q}(\tau)\bar{\hat{N}}(0)\rangle_{\vec{\mathcal{E}}}, \quad (0 < \tau < T)$$

Performing the spectral decomposition

$$\Delta C_{3pt}(\tau, \vec{\mathcal{E}}) = \langle \hat{N}(T)\bar{Q}(\tau)\hat{N}(0)\rangle_{\vec{\mathcal{E}}} \sim \sum_{n,m} e^{-E_n(T-\tau)-E_m\tau} \langle 0|\hat{N}|n, \mathcal{E}\rangle\langle n, \mathcal{E}|\bar{Q}|m, \mathcal{E}\rangle\langle m, \mathcal{E}|\hat{N}|0\rangle$$
$$= |Z_N|^2 e^{-m_N T} \langle N_+, \mathcal{E}|\bar{Q}|N_+, \mathcal{E}\rangle + (\text{excited states})$$

 $|N_+,\mathcal{E}\rangle$: ground state nucleon in the presence of b.g. electric field

This matrix element can be non-zero due to non-zero electric field, which corresponds to the energy shift (δE)

$$\langle N_+, \mathcal{E}|\bar{Q}|N_+, \mathcal{E}\rangle = \delta E = d_n \times \vec{\Sigma} \cdot \vec{\mathcal{E}}$$

c.f. 1st order energy correction in the perturbation theory of quantum mechanics

$$\hat{H} = \hat{H}_0 + \delta \hat{H}, \qquad \delta E_n = \langle n | (\delta \hat{H}) | n \rangle$$

Numerical test of Matrix element method

- ■Nf=2+1 (Mobius) Domain wall fermion, Iwasaki gauge action
- Topological charge: operator improvement via gradient flow
- 2 gauge ensembles with two pion masses
 - $M\pi$ =330 MeV: ~1400 configs x 64 AMA samples -> 89.6k stat.
 - $M\pi = 430 \text{ MeV}$: ~800 configs x 64 AMA -> 51.2 k stat.
- Background electric field: z-direction,
- Electric charge quanta: $|\mathcal{E}|=\pm 1,\pm 2$ in units of $\mathcal{E}_0=\frac{6\pi}{L_zL_t}$
- Ratio method (3pt/2pt)

$$\frac{\operatorname{Tr}[T_{Sz\pm}\Delta C_{3pt}(T,\tau,\mathcal{E}_z)]}{\operatorname{Tr}[T_pC_{2pt}(T,\mathcal{E}_z)]} = \pm \delta E \quad (T \to \infty)$$

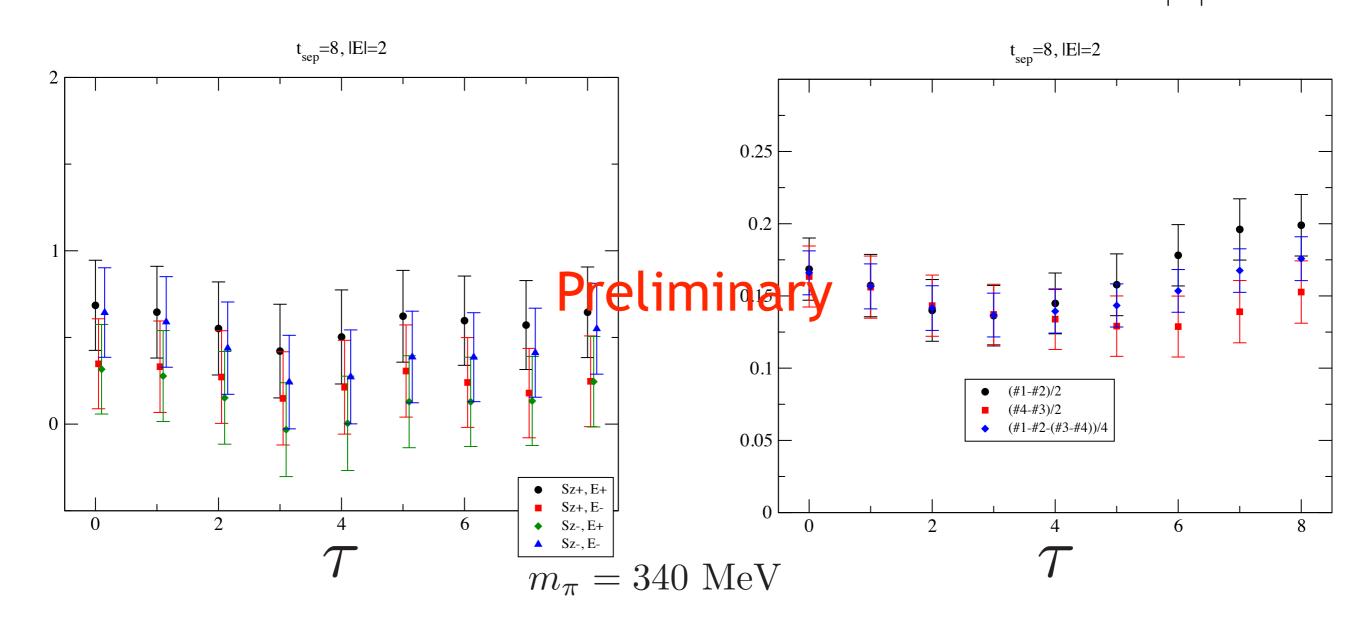
$$\Delta C_{3pt}(T,\tau,\vec{\mathcal{E}}) = \langle \hat{N}(T)\bar{Q}(\tau)\hat{\bar{N}}(0)\rangle_{\vec{\mathcal{E}}}, \qquad T_{Sz\pm} = \frac{1+\gamma_4}{2}(1\pm\Sigma_z), \qquad T_p = \frac{1+\gamma_4}{2}$$

$$\delta E = \frac{d_n \mathcal{E}_z}{2m_N} = \frac{F_{3n}(0)\mathcal{E}_z}{2m_N} \qquad \Rightarrow \qquad |F_{3n}(0)| = \frac{2m_N \delta E}{|\vec{\mathcal{E}}|}$$

Ratio at mπ=340 MeV

$$|F_{3n}(0)| = \frac{2m_N \delta E}{|\vec{\mathcal{E}}|}$$

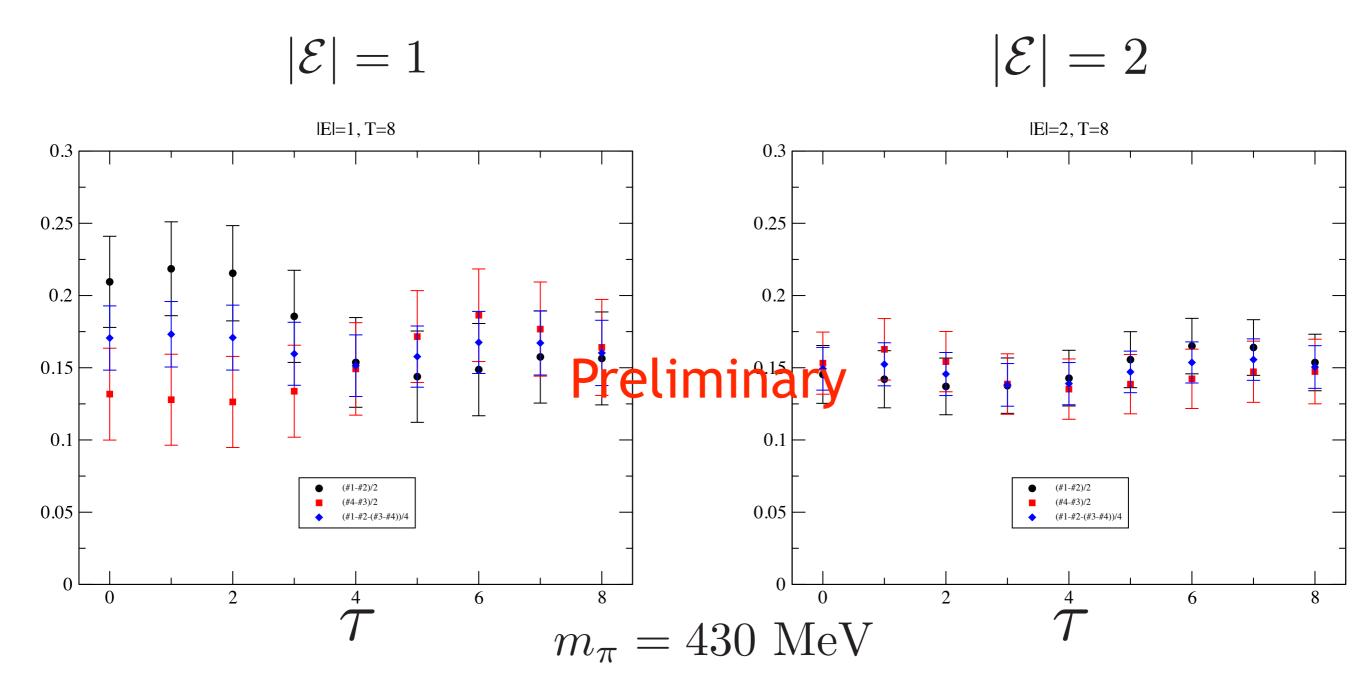
T = 8 $|\mathcal{E}| = 2$



Difference between spin up (positive E) and spin down (negative E) components has better signal.

Good plateau.

Electric field dependence at mπ=430 MeV



Two results for |E|=1 and |E|=2 are consistent. High order corrections (E^2) are small.

T dependence at m π =430 MeV $\langle \hat{N}(T)\bar{Q}(\tau)\hat{N}(0)\rangle_{\vec{\mathcal{E}}}$

$$|\mathcal{E}|=1 \qquad \qquad |\mathcal{E}|=2$$

Consistent results are obtained for $T \ge 8$.

We obtain
$$F_{3n}(0) = \begin{cases} 0.15(2) & (|\mathcal{E}| = 1) \\ 0.14(1) & (|\mathcal{E}| = 2) \end{cases}$$
 at m π =430 MeV

Summary

Lattice computation of lattice θ -EDM is very challenging.

Form factor methods

- Noise reduction techniques for Q-samplings have been developed in recent years.
- Good signal at heavier pion mass region
- The error becomes larger at the physical point.
- **■**Need to understand π mass (and Q²) dependence of F₃(Q²) form factor

A new method -matrix element approach-

- Potentially better control of the uncertainties (no need Q² extrapolation, no need to extend outside sink-source position)
- Need to study at the physical point

Thank you